MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2011 Today's Calculation Of Integral
678
678
Part of
2011 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 678
Source:
2/9/2011
Evaluate
∫
0
π
(
1
+
∑
k
=
1
n
k
cos
k
x
)
2
d
x
(
n
=
1
,
2
,
⋯
)
.
\int_0^{\pi} \left(1+\sum_{k=1}^n k\cos kx\right)^2dx\ \ (n=1,\ 2,\ \cdots).
∫
0
π
(
1
+
k
=
1
∑
n
k
cos
k
x
)
2
d
x
(
n
=
1
,
2
,
⋯
)
.
2011 Doshisya University entrance exam/Life Medical Sciences
calculus
integration
trigonometry
calculus computations