MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2010 Today's Calculation Of Integral
657
657
Part of
2010 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 657
Source:
12/1/2010
A sequence
a
n
a_n
a
n
is defined by
∫
a
n
a
n
+
1
(
1
+
∣
sin
x
∣
)
d
x
=
(
n
+
1
)
2
(
n
=
1
,
2
,
⋯
)
,
a
1
=
0
\int_{a_n}^{a_{n+1}} (1+|\sin x|)dx=(n+1)^2\ (n=1,\ 2,\ \cdots),\ a_1=0
∫
a
n
a
n
+
1
(
1
+
∣
sin
x
∣
)
d
x
=
(
n
+
1
)
2
(
n
=
1
,
2
,
⋯
)
,
a
1
=
0
.Find
lim
n
→
∞
a
n
n
3
\lim_{n\to\infty} \frac{a_n}{n^3}
lim
n
→
∞
n
3
a
n
.
calculus
integration
trigonometry
limit
function
linear algebra
calculus computations