MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2010 Today's Calculation Of Integral
656
656
Part of
2010 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 656
Source:
11/16/2010
Find
lim
n
→
∞
n
∫
0
π
2
1
(
1
+
cos
x
)
n
d
x
(
n
=
1
,
2
,
⋯
)
.
\lim_{n\to\infty} n\int_0^{\frac{\pi}{2}} \frac{1}{(1+\cos x)^n}dx\ (n=1,\ 2,\ \cdots).
lim
n
→
∞
n
∫
0
2
π
(
1
+
c
o
s
x
)
n
1
d
x
(
n
=
1
,
2
,
⋯
)
.
calculus
integration
limit
trigonometry
function
calculus computations