MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2010 Today's Calculation Of Integral
647
647
Part of
2010 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 647
Source:
9/17/2010
Evaluate
∫
0
π
x
p
x
cos
q
x
d
x
,
∫
0
π
x
p
x
sin
q
x
d
x
(
p
>
0
,
p
≠
1
,
q
∈
N
+
)
\int_0^{\pi} xp^x\cos qx\ dx,\ \int_0^{\pi} xp^x\sin qx\ dx\ (p>0,\ p\neq 1,\ q\in{\mathbb{N^{+}}})
∫
0
π
x
p
x
cos
q
x
d
x
,
∫
0
π
x
p
x
sin
q
x
d
x
(
p
>
0
,
p
=
1
,
q
∈
N
+
)
Own
calculus
integration
trigonometry
logarithms
calculus computations