MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2008 Today's Calculation Of Integral
375
375
Part of
2008 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 375
Source:
10/6/2008
Prove the following inequality.
1
n
<
∫
0
π
2
1
(
1
+
cos
x
)
n
d
x
<
n
+
5
n
(
n
+
1
)
(
n
=
2
,
3
,
⋯
)
\frac {1}{n} < \int_0^{\frac {\pi}{2}} \frac {1}{(1 + \cos x)^n}\ dx < \frac {n + 5}{n(n + 1)}\ (n =2,3,\ \cdots)
n
1
<
∫
0
2
π
(
1
+
c
o
s
x
)
n
1
d
x
<
n
(
n
+
1
)
n
+
5
(
n
=
2
,
3
,
⋯
)
.
calculus
integration
trigonometry
induction
inequalities
calculus computations