Consider a parabola C: y\equal{}\frac{1}{4}x^2 and the point F(0, 1). For the origin O, take n points on the parabola C, A1(x1, y1), A2(x2, y2), ⋯ ,An(xn, yn) such that xk>0 and \angle{OFA_k}\equal{}\frac{k\pi}{2n}\ (k\equal{}1,\ 2,\ 3,\ \cdots\ , n). Find \lim_{n\to\infty} \frac{1}{n} \sum_{k\equal{}1}^n FA_k. calculusintegrationconicsparabolalimitcalculus computations