Define the function f(x) as : \displaystyle f(x)\equal{}\left\{
\begin{array}{ll}
\frac{\ln (1\plus{}x)}{1\plus{}x}\ (x\geq 0) & \\
\frac{\ln (1\minus{}x)}{1\minus{}x}\ (\minus{}1\leq x<0) &
\end{array}
\right.
1. Examine the variation of f(x) and find the maximum and minimum value of f(x).
2. Find the value of a for which \int_{\minus{}1}^{e\minus{}1} |f(x)\minus{}a|\ dx is minimized for 0≤a≤e1. calculusintegrationfunctionlogarithmscalculus computations