g(x) is a differentiable function for 0≤x≤π and g′(x) is a continuous function for 0≤x≤π.
Let f(x) \equal{} g(x)\sin x. Find g(x) such that \int_0^{\pi} \{f(x)\}^2dx \equal{} \int_0^{\pi}\{f'(x)\}^2dx. calculusintegrationfunctiontrigonometrycalculus computations