For integers k (0≤k≤5), positive numbers m, n and real numbers a, b, let f(k)=∫−ππ(sinkx−asinmx−bsinnx)2 dx,
p(k)=k!(5−k)!5!(21)5, E=∑k=05p(k)f(k). Find the values of m, n, a, b for which E is minimized. calculusintegrationtrigonometrycalculus computations