Let m, n be the given distinct positive integers. Answer the following questions.
(1) Find the real number α (∣α∣<1) such that ∫−ππsin(m+α)x sin(n+α)x dx=0.
(2) Find the real number β satifying the sytem of equation ∫−ππsin2(m+β)x dx=π+4m−12, ∫−ππsin2(n+β)x dx=π+4n−12. calculusintegrationtrigonometrycalculus computations