MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2007 Today's Calculation Of Integral
180
180
Part of
2007 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 180
Source: Waseda university entrance exam 2007
2/16/2007
Let
a
n
a_{n}
a
n
be the area surrounded by the curves
y
=
e
−
x
y=e^{-x}
y
=
e
−
x
and the part of
y
=
e
−
x
∣
cos
x
∣
,
(
n
−
1
)
π
≤
x
≤
n
π
(
n
=
1
,
2
,
3
,
⋯
)
.
y=e^{-x}|\cos x|,\ (n-1)\pi \leq x\leq n\pi \ (n=1,\ 2,\ 3,\ \cdots).
y
=
e
−
x
∣
cos
x
∣
,
(
n
−
1
)
π
≤
x
≤
nπ
(
n
=
1
,
2
,
3
,
⋯
)
.
Evaluate
lim
n
→
∞
(
a
1
+
a
2
+
⋯
+
a
n
)
.
\lim_{n\to\infty}(a_{1}+a_{2}+\cdots+a_{n}).
lim
n
→
∞
(
a
1
+
a
2
+
⋯
+
a
n
)
.
calculus
integration
geometry
trigonometry
limit
calculus computations