MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2007 Today's Calculation Of Integral
168
168
Part of
2007 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 168
Source: Nagasaki university entrance exam 1980
1/15/2007
Prove that
∑
n
=
1
∞
∫
1
n
+
1
1
n
∣
1
x
sin
π
x
∣
d
x
\sum_{n=1}^{\infty}\int_{\frac{1}{n+1}}^{\frac{1}{n}}{\left|\frac{1}{x}\sin \frac{\pi}{x}\right| dx}
∑
n
=
1
∞
∫
n
+
1
1
n
1
x
1
sin
x
π
d
x
diverge for
x
>
0.
x>0.
x
>
0.
calculus
integration
trigonometry
calculus computations