MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2006 Today's Calculation Of Integral
129
129
Part of
2006 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 129
Source: Osaka Institute of Tecnology entrance exam 2006
7/26/2006
The sequence
{
a
n
}
\{a_{n}\}
{
a
n
}
is defined as follows.
a
1
=
π
4
,
a
n
=
∫
0
1
2
(
cos
π
x
+
a
n
−
1
)
cos
π
x
d
x
(
n
=
2
,
3
,
⋯
)
a_{1}=\frac{\pi}{4},\ a_{n}=\int_{0}^{\frac{1}{2}}(\cos \pi x+a_{n-1})\cos \pi x\ dx\ \ (n=2,3,\cdots)
a
1
=
4
π
,
a
n
=
∫
0
2
1
(
cos
π
x
+
a
n
−
1
)
cos
π
x
d
x
(
n
=
2
,
3
,
⋯
)
Find
lim
n
→
∞
a
n
\lim_{n\to\infty}a_{n}
lim
n
→
∞
a
n
.
calculus
integration
trigonometry
limit
calculus computations