MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2005 Today's Calculation Of Integral
85
85
Part of
2005 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 85
Source: 1991 Ochanomizu Women University Entrance exam
9/27/2005
Evaluate
lim
n
→
∞
∫
0
π
2
[
n
sin
x
]
n
d
x
\lim_{n\to\infty} \int_0^{\frac{\pi}{2}} \frac{[n\sin x]}{n}\ dx
n
→
∞
lim
∫
0
2
π
n
[
n
sin
x
]
d
x
where
[
x
]
[x]
[
x
]
is the integer equal to
x
x
x
or less than
x
x
x
.
calculus
integration
limit
trigonometry
calculus computations