MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2005 Today's Calculation Of Integral
63
63
Part of
2005 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 63
Source: 1997 Hiroshima University
7/5/2005
For a positive number
x
x
x
, let
f
(
x
)
=
lim
n
→
∞
∑
k
=
1
n
∣
cos
(
2
k
+
1
2
n
x
)
−
cos
(
2
k
−
1
2
n
x
)
∣
f(x)=\lim_{n\to\infty} \sum_{k=1}^n \left|\cos \left(\frac{2k+1}{2n}x\right)-\cos \left(\frac{2k-1}{2n}x\right)\right|
f
(
x
)
=
lim
n
→
∞
∑
k
=
1
n
cos
(
2
n
2
k
+
1
x
)
−
cos
(
2
n
2
k
−
1
x
)
Evaluate
lim
x
→
∞
f
(
x
)
x
\lim_{x\rightarrow\infty}\frac{f(x)}{x}
x
→
∞
lim
x
f
(
x
)
calculus
integration
limit
trigonometry
calculus computations