MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2005 Today's Calculation Of Integral
48
48
Part of
2005 Today's Calculation Of Integral
Problems
(1)
Today's Calculation of Integral 48
Source: 1969 Yokohama City University
6/19/2005
Evaluate
lim
n
→
∞
(
∫
0
π
sin
2
n
x
sin
x
d
x
−
∑
k
=
1
n
1
k
)
\lim_{n\to\infty} \left(\int_0^{\pi} \frac{\sin ^ 2 nx}{\sin x}dx-\sum_{k=1}^n \frac{1}{k}\right)
n
→
∞
lim
(
∫
0
π
sin
x
sin
2
n
x
d
x
−
k
=
1
∑
n
k
1
)
calculus
integration
limit
trigonometry
logarithms
calculus computations