MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Japan MO Finals
2005 Japan MO Finals
3
3
Part of
2005 Japan MO Finals
Problems
(1)
Proof of ineqality
Source: Japan Mathematical Olympiad Finals 2005, Problem 3
3/30/2005
Let
a
,
b
,
c
a,b,c
a
,
b
,
c
be positive real numbers such that
a
+
b
+
c
=
1.
a+b+c=1.
a
+
b
+
c
=
1.
Prove the following inequality.
a
1
+
b
−
c
3
+
b
1
+
c
−
a
3
+
c
1
+
a
−
b
3
≦
1
a\sqrt[3]{1+b-c}+b\sqrt[3]{1+c-a}+c\sqrt[3]{1+a-b}\leqq 1
a
3
1
+
b
−
c
+
b
3
1
+
c
−
a
+
c
3
1
+
a
−
b
≦
1
inequalities
function
inequalities proposed