MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Japan MO Finals
1998 Japan MO Finals
4
4
Part of
1998 Japan MO Finals
Problems
(1)
Number of permutations
Source: Japan Mathematical Olympiad Finals 1998, Problem 4
8/3/2007
Let
c
n
,
m
c_{n, m}
c
n
,
m
be the number of permutations of
{
1
,
…
,
n
}
\{1, \ldots, n\}
{
1
,
…
,
n
}
which can be written as the product of
m
m
m
transpositions of the form
(
i
,
i
+
1
)
(i, i+1)
(
i
,
i
+
1
)
for some
i
=
1
,
…
,
n
−
1
i=1, \ldots, n-1
i
=
1
,
…
,
n
−
1
but not of
m
−
1
m-1
m
−
1
suct transpositions. Prove that for all
n
∈
N
n \in \mathbb{N}
n
∈
N
,
∑
m
=
0
∞
c
n
,
m
t
m
=
∏
i
=
1
n
(
1
+
t
+
⋯
+
t
i
−
1
)
.
\sum_{m=0}^\infty c_{n, m}t^{m}= \prod_{i=1}^{n}(1+t+\cdots+t^{i-1}).
m
=
0
∑
∞
c
n
,
m
t
m
=
i
=
1
∏
n
(
1
+
t
+
⋯
+
t
i
−
1
)
.
algebra proposed
algebra