MathDB
Problems
Contests
National and Regional Contests
Italy Contests
ITAMO
2024 ITAMO
6
6
Part of
2024 ITAMO
Problems
(1)
Maximizing a sum of integer fractions
Source: Italy MO 2024 P6
5/15/2024
For each integer
n
n
n
, determine the smallest real number
M
n
M_n
M
n
such that
1
a
1
+
a
1
a
2
+
a
2
a
3
+
⋯
+
a
n
−
1
a
n
≤
M
n
\frac{1}{a_1}+\frac{a_1}{a_2}+\frac{a_2}{a_3}+\dots+\frac{a_{n-1}}{a_n} \le M_n
a
1
1
+
a
2
a
1
+
a
3
a
2
+
⋯
+
a
n
a
n
−
1
≤
M
n
for any
n
n
n
-tuple
(
a
1
,
a
2
,
…
,
a
n
)
(a_1,a_2,\dots,a_n)
(
a
1
,
a
2
,
…
,
a
n
)
of integers such that
1
<
a
1
<
a
2
<
⋯
<
a
n
1<a_1<a_2<\dots<a_n
1
<
a
1
<
a
2
<
⋯
<
a
n
.
inequalities
inequalities proposed
Integer