MathDB
Problems
Contests
National and Regional Contests
Ireland Contests
Ireland National Math Olympiad
2022 Irish Math Olympiad
3
3
Part of
2022 Irish Math Olympiad
Problems
(1)
Permutations and Turning points
Source: IrMO 2022
5/8/2022
Let n
≥
\ge
≥
3 be an integer and let (
p
1
p_1
p
1
,
p
2
p_2
p
2
,
p
3
p_3
p
3
,
…
\dots
…
,
p
n
p_n
p
n
) be a permutation of {1, 2, 3,
…
\dots
…
n}. For this permutation we say that
p
t
p_t
p
t
is a turning point if 2
≤
\le
≤
t
≤
\le
≤
n-1 and (
p
t
p_t
p
t
-
p
t
−
1
p_{t-1}
p
t
−
1
)(
p
t
p_t
p
t
-
p
t
+
1
p_{t+1}
p
t
+
1
) > 0For example, for n = 8, the permutation (2, 4, 6, 7, 5, 1, 3, 8) has two turning points:
p
4
p_4
p
4
= 7 and
p
6
p_6
p
6
= 1.For fixed n, let q(n) denote the number of permutations of {1, 2, 3,
…
\dots
…
n} with exactly one turning point. Find all n
≥
\ge
≥
3 for which q(n) is a perfect square.
combinatorics