MathDB
Problems
Contests
National and Regional Contests
Ireland Contests
Ireland National Math Olympiad
2021 Irish Math Olympiad
9
9
Part of
2021 Irish Math Olympiad
Problems
(1)
|AB/3- 3ab| -3ab<=1 - ab if |A - 3a| <=1 - a , and |B -3b| <= 1 - b and a,b>0
Source: 2021 Irish Mathematical Olympiad P9
5/30/2021
Suppose the real numbers
a
,
A
,
b
,
B
a, A, b, B
a
,
A
,
b
,
B
satisfy the inequalities:
∣
A
−
3
a
∣
≤
1
−
a
,
∣
B
−
3
b
∣
≤
1
−
b
|A - 3a| \le 1 - a\,\,\, , \,\,\, |B -3b| \le 1 - b
∣
A
−
3
a
∣
≤
1
−
a
,
∣
B
−
3
b
∣
≤
1
−
b
, and
a
,
b
a, b
a
,
b
are positive. Prove that
∣
A
B
3
−
3
a
b
∣
−
3
a
b
≤
1
−
a
b
.
\left|\frac{AB}{3}- 3ab\right | - 3ab \le 1 - ab.
3
A
B
−
3
ab
−
3
ab
≤
1
−
ab
.
inequalities
algebra