MathDB

1990 Irish Math Olympiad

Part of Ireland National Math Olympiad

Subcontests

(6)
4
2

Comparing n-tuples

Let n=2k1n=2k-1, where k6k\ge 6 is an integer. Let TT be the set of all nn-tuples <spanclass=latexbold>x</span>=(x1,x2,,xn), where, for i=1,2,,n, xi is 0 or 1.<span class='latex-bold'>x</span>=(x_1,x_2,\dots ,x_n), \text{ where, for } i=1,2,\dots ,n, \text{ } x_i \text{ is } 0 \text{ or } 1. For <spanclass=latexbold>x</span>=(x1,x2,,xn)<span class='latex-bold'>x</span>=(x_1,x_2,\dots ,x_n) and <spanclass=latexbold>y</span>=(y1,y2,,yn)<span class='latex-bold'>y</span>=(y_1,y_2,\dots ,y_n) in TT, let d(<spanclass=latexbold>x</span>,<spanclass=latexbold>y</span>)d(<span class='latex-bold'>x</span>,<span class='latex-bold'>y</span>) denote the number of integers jj with 1jn1\le j\le n such that xjxyx_j\neq x_y. ((In particular, d(<spanclass=latexbold>x</span>,<spanclass=latexbold>x</span>)=0)d(<span class='latex-bold'>x</span>,<span class='latex-bold'>x</span>)=0).
Suppose that there exists a subset SS of TT with 2k2^k elements which has the following property: given any element <spanclass=latexbold>x</span><span class='latex-bold'>x</span> in TT, there is a unique <spanclass=latexbold>y</span><span class='latex-bold'>y</span> in SS with d(<spanclass=latexbold>x</span>,<spanclass=latexbold>y</span>)3d(<span class='latex-bold'>x</span>,<span class='latex-bold'>y</span>)\le 3.
Prove that n=23n=23.