MathDB
Problems
Contests
National and Regional Contests
Iran Contests
Iran Team Selection Test
2013 Iran Team Selection Test
11
11
Part of
2013 Iran Team Selection Test
Problems
(1)
Inequality about sides of a triangle
Source: Iran TST 2013:TST 2,Day 2,Problem 2
4/25/2013
Let
a
,
b
,
c
a,b,c
a
,
b
,
c
be sides of a triangle such that
a
≥
b
≥
c
a\geq b \geq c
a
≥
b
≥
c
. prove that:
a
(
a
+
b
−
a
b
)
+
b
(
a
+
c
−
a
c
)
+
c
(
b
+
c
−
b
c
)
≥
a
+
b
+
c
\sqrt{a(a+b-\sqrt{ab})}+\sqrt{b(a+c-\sqrt{ac})}+\sqrt{c(b+c-\sqrt{bc})}\geq a+b+c
a
(
a
+
b
−
ab
)
+
b
(
a
+
c
−
a
c
)
+
c
(
b
+
c
−
b
c
)
≥
a
+
b
+
c
inequalities
inequalities proposed