MathDB
Problems
Contests
National and Regional Contests
Iran Contests
Iran MO (2nd Round)
2000 Iran MO (2nd round)
2000 Iran MO (2nd round)
Part of
Iran MO (2nd Round)
Subcontests
(3)
3
2
Hide problems
There exist 16 subsets of M
Let
M
=
{
1
,
2
,
3
,
…
,
10000
}
.
M=\{1,2,3,\ldots, 10000\}.
M
=
{
1
,
2
,
3
,
…
,
10000
}
.
Prove that there are
16
16
16
subsets of
M
M
M
such that for every
a
∈
M
,
a \in M,
a
∈
M
,
there exist
8
8
8
of those subsets that intersection of the sets is exactly
{
a
}
.
\{a\}.
{
a
}
.
Super Numbers (Iran National Olympiad 2000)
Super number is a sequence of numbers
0
,
1
,
2
,
…
,
9
0,1,2,\ldots,9
0
,
1
,
2
,
…
,
9
such that it has infinitely many digits at left. For example
…
3030304
\ldots 3030304
…
3030304
is a super number. Note that all of positive integers are super numbers, which have zeros before they're original digits (for example we can represent the number
4
4
4
as
…
,
00004
\ldots, 00004
…
,
00004
). Like positive integers, we can add up and multiply super numbers. For example:
…
3030304
+
…
4571378
‾
…
7601682
\begin{array}{cc}& \ \ \ \ldots 3030304 \\ &+ \ldots4571378\\ &\overline{\qquad \qquad \qquad }\\ & \ \ \ \ldots 7601682 \end{array}
…
3030304
+
…
4571378
…
7601682
And
…
3030304
×
…
4571378
‾
…
4242432
…
212128
…
90912
…
0304
…
128
…
20
…
6
‾
…
5038912
\begin{array}{cl}& \ \ \ \ldots 3030304 \\ &\times \ldots4571378\\ &\overline{\qquad \qquad \qquad }\\ & \ \ \ \ldots 4242432 \\ & \ \ \ \ldots 212128 \\ & \ \ \ \ldots 90912 \\ & \ \ \ \ldots 0304 \\ & \ \ \ \ldots 128 \\ & \ \ \ \ldots 20 \\ & \ \ \ \ldots 6 \\ &\overline{\qquad \qquad \qquad } \\ & \ \ \ \ldots 5038912 \end{array}
…
3030304
×
…
4571378
…
4242432
…
212128
…
90912
…
0304
…
128
…
20
…
6
…
5038912
a) Suppose that
A
A
A
is a super number. Prove that there exists a super number
B
B
B
such that
A
+
B
=
0
←
A+B=\stackrel{\leftarrow}{0}
A
+
B
=
0
←
(Note:
0
←
\stackrel{\leftarrow}{0}
0
←
means a super number that all of its digits are zero).b) Find all super numbers
A
A
A
for which there exists a super number
B
B
B
such that
A
×
B
=
0
←
1
A \times B=\stackrel{\leftarrow}{0}1
A
×
B
=
0
←
1
(Note:
0
←
1
\stackrel{\leftarrow}{0}1
0
←
1
means the super number
…
00001
\ldots 00001
…
00001
).c) Is this true that if
A
×
B
=
0
←
A \times B= \stackrel{\leftarrow}{0}
A
×
B
=
0
←
, then
A
=
0
←
A=\stackrel{\leftarrow}{0}
A
=
0
←
or
B
=
0
←
B=\stackrel{\leftarrow}{0}
B
=
0
←
? Justify your answer.
2
2
Hide problems
ABC and DEF have the same centroid
The points
D
,
E
D,E
D
,
E
and
F
F
F
are chosen on the sides
B
C
,
A
C
BC,AC
BC
,
A
C
and
A
B
AB
A
B
of triangle
A
B
C
ABC
A
BC
, respectively. Prove that triangles
A
B
C
ABC
A
BC
and
D
E
F
DEF
D
EF
have the same centroid if and only if
B
D
D
C
=
C
E
E
A
=
A
F
F
B
\frac{BD}{DC} = \frac{CE}{EA}=\frac{AF}{FB}
D
C
B
D
=
E
A
CE
=
FB
A
F
Faces of the tetrahedron are congruent triangle
In a tetrahedron we know that sum of angles of all vertices is
18
0
∘
.
180^\circ.
18
0
∘
.
(e.g. for vertex
A
A
A
, we have
∠
B
A
C
+
∠
C
A
D
+
∠
D
A
B
=
18
0
∘
.
\angle BAC + \angle CAD + \angle DAB=180^\circ.
∠
B
A
C
+
∠
C
A
D
+
∠
D
A
B
=
18
0
∘
.
) Prove that faces of this tetrahedron are four congruent triangles.
1
2
Hide problems
Dividing the set of positive integers into three subsets
Find all positive integers
n
n
n
such that we can divide the set
{
1
,
2
,
3
,
…
,
n
}
\{1,2,3,\ldots,n\}
{
1
,
2
,
3
,
…
,
n
}
into three sets with the same sum of members.
an interesting set
21
21
21
distinct numbers are chosen from the set
{
1
,
2
,
3
,
…
,
2046
}
.
\{1,2,3,\ldots,2046\}.
{
1
,
2
,
3
,
…
,
2046
}
.
Prove that we can choose three distinct numbers
a
,
b
,
c
a,b,c
a
,
b
,
c
among those
21
21
21
numbers such that
b
c
<
2
a
2
<
4
b
c
bc<2a^2<4bc
b
c
<
2
a
2
<
4
b
c