MathDB
Problems
Contests
National and Regional Contests
Iran Contests
Iran MO (2nd Round)
1990 Iran MO (2nd round)
1990 Iran MO (2nd round)
Part of
Iran MO (2nd Round)
Subcontests
(3)
3
2
Hide problems
The sum is less than 2n+1 [Iran Second Round 1990]
(a) For every positive integer
n
n
n
prove that
1
+
1
2
2
+
1
3
2
+
⋯
+
1
n
2
<
2
1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2} <2
1
+
2
2
1
+
3
2
1
+
⋯
+
n
2
1
<
2
(b) Let
X
=
{
1
,
2
,
3
,
…
,
n
}
(
n
≥
1
)
X=\{1, 2, 3 ,\ldots, n\} \ ( n \geq 1)
X
=
{
1
,
2
,
3
,
…
,
n
}
(
n
≥
1
)
and let
A
k
A_k
A
k
be non-empty subsets of
X
(
k
=
1
,
2
,
3
,
…
,
2
n
−
1
)
.
X \ (k=1,2,3, \ldots , 2^n -1).
X
(
k
=
1
,
2
,
3
,
…
,
2
n
−
1
)
.
If
a
k
a_k
a
k
be the product of all elements of the set
A
k
,
A_k,
A
k
,
prove that
∑
i
=
1
m
∑
j
=
1
m
1
a
i
⋅
j
2
<
2
n
+
1
\sum_{i=1}^{m} \sum_{j=1}^m \frac{1}{a_i \cdot j^2} <2n+1
i
=
1
∑
m
j
=
1
∑
m
a
i
⋅
j
2
1
<
2
n
+
1
Can we cover a 5 X 137 rectangular? [Iran Second Round 1990]
We want to cover a rectangular
5
×
137
5 \times 137
5
×
137
with the following figures, prove that this is impossible.
Squars are the same and all are
1
×
1
\text{Squars are the same and all are } \Huge{1 \times 1}
Squars are the same and all are
1
×
1
[asy] import graph; size(400); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1); draw((2,4)--(0,4),linewidth(2pt)); draw((0,4)--(0,0),linewidth(2pt)); draw((0,0)--(2,0),linewidth(2pt)); draw((2,0)--(2,1),linewidth(2pt)); draw((2,1)--(0,1),linewidth(2pt)); draw((1,0)--(1,4),linewidth(2pt)); draw((2,4)--(2,3),linewidth(2pt)); draw((2,3)--(0,3),linewidth(2pt)); draw((0,2)--(1,2),linewidth(2pt)); label("(1)", (0.56,-1.54), SE*lsf); draw((4,2)--(4,1),linewidth(2pt)); draw((7,2)--(7,1),linewidth(2pt)); draw((4,2)--(7,2),linewidth(2pt)); draw((4,1)--(7,1),linewidth(2pt)); draw((6,0)--(6,3),linewidth(2pt)); draw((5,3)--(5,0),linewidth(2pt)); draw((5,0)--(6,0),linewidth(2pt)); draw((5,3)--(6,3),linewidth(2pt)); label("(2)", (5.13,-1.46), SE*lsf); draw((9,0)--(9,3),linewidth(2pt)); draw((10,3)--(10,0),linewidth(2pt)); draw((12,3)--(12,0),linewidth(2pt)); draw((11,0)--(11,3),linewidth(2pt)); draw((9,2)--(12,2),linewidth(2pt)); draw((12,1)--(9,1),linewidth(2pt)); draw((9,3)--(10,3),linewidth(2pt)); draw((11,3)--(12,3),linewidth(2pt)); draw((12,0)--(11,0),linewidth(2pt)); draw((9,0)--(10,0),linewidth(2pt)); label("(3)", (10.08,-1.48), SE*lsf); draw((14,1)--(17,1),linewidth(2pt)); draw((15,2)--(17,2),linewidth(2pt)); draw((15,2)--(15,0),linewidth(2pt)); draw((15,0)--(14,0)); draw((14,1)--(14,0),linewidth(2pt)); draw((16,2)--(16,0),linewidth(2pt)); label("(4)", (15.22,-1.5), SE*lsf); draw((14,0)--(16,0),linewidth(2pt)); draw((17,2)--(17,1),linewidth(2pt)); draw((19,3)--(19,0),linewidth(2pt)); draw((20,3)--(20,0),linewidth(2pt)); draw((20,3)--(19,3),linewidth(2pt)); draw((19,2)--(20,2),linewidth(2pt)); draw((19,1)--(20,1),linewidth(2pt)); draw((20,0)--(19,0),linewidth(2pt)); label("(5)", (19.11,-1.5), SE*lsf); dot((0,0),ds); dot((0,1),ds); dot((0,2),ds); dot((0,3),ds); dot((0,4),ds); dot((1,4),ds); dot((2,4),ds); dot((2,3),ds); dot((1,3),ds); dot((1,2),ds); dot((1,1),ds); dot((2,1),ds); dot((2,0),ds); dot((1,0),ds); dot((5,0),ds); dot((6,0),ds); dot((5,1),ds); dot((6,1),ds); dot((5,2),ds); dot((6,2),ds); dot((5,3),ds); dot((6,3),ds); dot((7,2),ds); dot((7,1),ds); dot((4,1),ds); dot((4,2),ds); dot((9,0),ds); dot((9,1),ds); dot((9,2),ds); dot((9,3),ds); dot((10,0),ds); dot((11,0),ds); dot((12,0),ds); dot((10,1),ds); dot((10,2),ds); dot((10,3),ds); dot((11,1),ds); dot((11,2),ds); dot((11,3),ds); dot((12,1),ds); dot((12,2),ds); dot((12,3),ds); dot((14,0),ds); dot((15,0),ds); dot((16,0),ds); dot((15,1),ds); dot((14,1),ds); dot((16,1),ds); dot((15,2),ds); dot((16,2),ds); dot((17,2),ds); dot((17,1),ds); dot((19,0),ds); dot((20,0),ds); dot((19,1),ds); dot((20,1),ds); dot((19,2),ds); dot((20,2),ds); dot((19,3),ds); dot((20,3),ds); clip((-0.41,-10.15)--(-0.41,8.08)--(21.25,8.08)--(21.25,-10.15)--cycle); [/asy]
2
2
Hide problems
Solve (x^2-x)(x^2-2x+2)=y^2-1 [Iran Second Round 1990]
Find all integer solutions to the equation
(
x
2
−
x
)
(
x
2
−
2
x
+
2
)
=
y
2
−
1
(x^2-x)(x^2-2x+2)=y^2-1
(
x
2
−
x
)
(
x
2
−
2
x
+
2
)
=
y
2
−
1
Nice roots problem [Iran Second Round 1990]
Let
α
\alpha
α
be a root of the equation
x
3
−
5
x
+
3
=
0
x^3-5x+3=0
x
3
−
5
x
+
3
=
0
and let
f
(
x
)
f(x)
f
(
x
)
be a polynomial with rational coefficients. Prove that if
f
(
α
)
f(\alpha)
f
(
α
)
be the root of equation above, then
f
(
f
(
α
)
)
f(f(\alpha))
f
(
f
(
α
))
is a root, too.
1
2
Hide problems
Maximum value of the sum [Iran Second Round 1990]
(a) Consider the set of all triangles
A
B
C
ABC
A
BC
which are inscribed in a circle with radius
R
.
R.
R
.
When is
A
B
2
+
B
C
2
+
C
A
2
AB^2+BC^2+CA^2
A
B
2
+
B
C
2
+
C
A
2
maximum? Find this maximum.(b) Consider the set of all tetragonals
A
B
C
D
ABCD
A
BC
D
which are inscribed in a sphere with radius
R
.
R.
R
.
When is the sum of squares of the six edges of
A
B
C
D
ABCD
A
BC
D
maximum? Find this maximum, and in this case prove that all of the edges are equal.
Prove that RS || Delta [Iran Second Round 1990]
Let
A
B
C
D
ABCD
A
BC
D
be a parallelogram. The line
Δ
\Delta
Δ
meets the lines
A
B
,
B
C
,
C
D
AB, BC, CD
A
B
,
BC
,
C
D
and
D
A
DA
D
A
at
M
,
N
,
P
M, N, P
M
,
N
,
P
and
Q
,
Q,
Q
,
respectively. Let
R
R
R
be the intersection point of the lines
A
B
,
D
N
AB,DN
A
B
,
D
N
and let
S
S
S
be intersection point of the lines
A
D
,
B
P
.
AD, BP.
A
D
,
BP
.
Prove that
R
S
∥
Δ
.
RS \parallel \Delta.
RS
∥
Δ.
[asy] import graph; size(400); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1); pen qqzzcc = rgb(0,0.6,0.8); pen wwwwff = rgb(0.4,0.4,1); draw((2,2)--(6,2),qqzzcc+linewidth(1.6pt)); draw((6,2)--(4,0),qqzzcc+linewidth(1.6pt)); draw((-1.95,(+12-2*-1.95)/2)--(12.24,(+12-2*12.24)/2),qqzzcc+linewidth(1.6pt)); draw((-1.95,(-0+3*-1.95)/3)--(12.24,(-0+3*12.24)/3),qqzzcc+linewidth(1.6pt)); draw((-1.95,(-0-0*-1.95)/6)--(12.24,(-0-0*12.24)/6),qqzzcc+linewidth(1.6pt)); draw((4,0)--(4,4),wwwwff+linewidth(1.2pt)+linetype("3pt 3pt")); draw((2,2)--(8.14,0),wwwwff+linewidth(1.2pt)+linetype("3pt 3pt")); draw((-1.95,(+32.56-4*-1.95)/4.14)--(12.24,(+32.56-4*12.24)/4.14),qqzzcc+linewidth(1.6pt)); dot((0,0),ds); label("
A
A
A
", (0,-0.3),NE*lsf); dot((4,0),ds); label("
B
B
B
", (4.02,-0.33),NE*lsf); dot((2,2),ds); label("
D
D
D
", (1.81,2.07),NE*lsf); dot((6,2),ds); label("
C
C
C
", (6.16,2.08),NE*lsf); dot((3,3),ds); label("
Q
Q
Q
", (2.97,3.22),NE*lsf); dot((5,1),ds); label("
N
N
N
", (4.99,1.19),NE*lsf); label("
Δ
\Delta
Δ
", (1.7,3.76),NE*lsf); dot((6,0),ds); label("
M
M
M
", (5.9,-0.33),NE*lsf); dot((4,2),ds); label("
P
P
P
", (4.02,2.08),NE*lsf); dot((4,4),ds); label("
S
S
S
", (3.94,4.12),NE*lsf); dot((8.14,0),ds); label("
E
E
E
", (8.2,0.09),NE*lsf); clip((-1.95,-6.96)--(-1.95,4.99)--(12.24,4.99)--(12.24,-6.96)--cycle); [/asy]