MathDB

1990 Iran MO (2nd round)

Part of Iran MO (2nd Round)

Subcontests

(3)
3
2

Can we cover a 5 X 137 rectangular? [Iran Second Round 1990]

We want to cover a rectangular 5×1375 \times 137 with the following figures, prove that this is impossible.
Squars are the same and all are 1×1\text{Squars are the same and all are } \Huge{1 \times 1} [asy] import graph; size(400); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1); draw((2,4)--(0,4),linewidth(2pt)); draw((0,4)--(0,0),linewidth(2pt)); draw((0,0)--(2,0),linewidth(2pt)); draw((2,0)--(2,1),linewidth(2pt)); draw((2,1)--(0,1),linewidth(2pt)); draw((1,0)--(1,4),linewidth(2pt)); draw((2,4)--(2,3),linewidth(2pt)); draw((2,3)--(0,3),linewidth(2pt)); draw((0,2)--(1,2),linewidth(2pt)); label("(1)", (0.56,-1.54), SE*lsf); draw((4,2)--(4,1),linewidth(2pt)); draw((7,2)--(7,1),linewidth(2pt)); draw((4,2)--(7,2),linewidth(2pt)); draw((4,1)--(7,1),linewidth(2pt)); draw((6,0)--(6,3),linewidth(2pt)); draw((5,3)--(5,0),linewidth(2pt)); draw((5,0)--(6,0),linewidth(2pt)); draw((5,3)--(6,3),linewidth(2pt)); label("(2)", (5.13,-1.46), SE*lsf); draw((9,0)--(9,3),linewidth(2pt)); draw((10,3)--(10,0),linewidth(2pt)); draw((12,3)--(12,0),linewidth(2pt)); draw((11,0)--(11,3),linewidth(2pt)); draw((9,2)--(12,2),linewidth(2pt)); draw((12,1)--(9,1),linewidth(2pt)); draw((9,3)--(10,3),linewidth(2pt)); draw((11,3)--(12,3),linewidth(2pt)); draw((12,0)--(11,0),linewidth(2pt)); draw((9,0)--(10,0),linewidth(2pt)); label("(3)", (10.08,-1.48), SE*lsf); draw((14,1)--(17,1),linewidth(2pt)); draw((15,2)--(17,2),linewidth(2pt)); draw((15,2)--(15,0),linewidth(2pt)); draw((15,0)--(14,0)); draw((14,1)--(14,0),linewidth(2pt)); draw((16,2)--(16,0),linewidth(2pt)); label("(4)", (15.22,-1.5), SE*lsf); draw((14,0)--(16,0),linewidth(2pt)); draw((17,2)--(17,1),linewidth(2pt)); draw((19,3)--(19,0),linewidth(2pt)); draw((20,3)--(20,0),linewidth(2pt)); draw((20,3)--(19,3),linewidth(2pt)); draw((19,2)--(20,2),linewidth(2pt)); draw((19,1)--(20,1),linewidth(2pt)); draw((20,0)--(19,0),linewidth(2pt)); label("(5)", (19.11,-1.5), SE*lsf); dot((0,0),ds); dot((0,1),ds); dot((0,2),ds); dot((0,3),ds); dot((0,4),ds); dot((1,4),ds); dot((2,4),ds); dot((2,3),ds); dot((1,3),ds); dot((1,2),ds); dot((1,1),ds); dot((2,1),ds); dot((2,0),ds); dot((1,0),ds); dot((5,0),ds); dot((6,0),ds); dot((5,1),ds); dot((6,1),ds); dot((5,2),ds); dot((6,2),ds); dot((5,3),ds); dot((6,3),ds); dot((7,2),ds); dot((7,1),ds); dot((4,1),ds); dot((4,2),ds); dot((9,0),ds); dot((9,1),ds); dot((9,2),ds); dot((9,3),ds); dot((10,0),ds); dot((11,0),ds); dot((12,0),ds); dot((10,1),ds); dot((10,2),ds); dot((10,3),ds); dot((11,1),ds); dot((11,2),ds); dot((11,3),ds); dot((12,1),ds); dot((12,2),ds); dot((12,3),ds); dot((14,0),ds); dot((15,0),ds); dot((16,0),ds); dot((15,1),ds); dot((14,1),ds); dot((16,1),ds); dot((15,2),ds); dot((16,2),ds); dot((17,2),ds); dot((17,1),ds); dot((19,0),ds); dot((20,0),ds); dot((19,1),ds); dot((20,1),ds); dot((19,2),ds); dot((20,2),ds); dot((19,3),ds); dot((20,3),ds); clip((-0.41,-10.15)--(-0.41,8.08)--(21.25,8.08)--(21.25,-10.15)--cycle); [/asy]
1
2

Prove that RS || Delta [Iran Second Round 1990]

Let ABCDABCD be a parallelogram. The line Δ\Delta meets the lines AB,BC,CDAB, BC, CD and DADA at M,N,PM, N, P and Q,Q, respectively. Let RR be the intersection point of the lines AB,DNAB,DN and let SS be intersection point of the lines AD,BP.AD, BP. Prove that RSΔ.RS \parallel \Delta.
[asy] import graph; size(400); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1); pen qqzzcc = rgb(0,0.6,0.8); pen wwwwff = rgb(0.4,0.4,1); draw((2,2)--(6,2),qqzzcc+linewidth(1.6pt)); draw((6,2)--(4,0),qqzzcc+linewidth(1.6pt)); draw((-1.95,(+12-2*-1.95)/2)--(12.24,(+12-2*12.24)/2),qqzzcc+linewidth(1.6pt)); draw((-1.95,(-0+3*-1.95)/3)--(12.24,(-0+3*12.24)/3),qqzzcc+linewidth(1.6pt)); draw((-1.95,(-0-0*-1.95)/6)--(12.24,(-0-0*12.24)/6),qqzzcc+linewidth(1.6pt)); draw((4,0)--(4,4),wwwwff+linewidth(1.2pt)+linetype("3pt 3pt")); draw((2,2)--(8.14,0),wwwwff+linewidth(1.2pt)+linetype("3pt 3pt")); draw((-1.95,(+32.56-4*-1.95)/4.14)--(12.24,(+32.56-4*12.24)/4.14),qqzzcc+linewidth(1.6pt)); dot((0,0),ds); label("AA", (0,-0.3),NE*lsf); dot((4,0),ds); label("BB", (4.02,-0.33),NE*lsf); dot((2,2),ds); label("DD", (1.81,2.07),NE*lsf); dot((6,2),ds); label("CC", (6.16,2.08),NE*lsf); dot((3,3),ds); label("QQ", (2.97,3.22),NE*lsf); dot((5,1),ds); label("NN", (4.99,1.19),NE*lsf); label("Δ\Delta", (1.7,3.76),NE*lsf); dot((6,0),ds); label("MM", (5.9,-0.33),NE*lsf); dot((4,2),ds); label("PP", (4.02,2.08),NE*lsf); dot((4,4),ds); label("SS", (3.94,4.12),NE*lsf); dot((8.14,0),ds); label("EE", (8.2,0.09),NE*lsf); clip((-1.95,-6.96)--(-1.95,4.99)--(12.24,4.99)--(12.24,-6.96)--cycle); [/asy]