MathDB
Problems
Contests
National and Regional Contests
Indonesia Contests
Indonesia MO Shortlist
2014 Indonesia MO Shortlist
A5
A5
Part of
2014 Indonesia MO Shortlist
Problems
(1)
(a_1+a_2+...+a_m)/m >= \sqrt{(a_1^2+a_2^2+...+a_{2014}^2)/2014} , max m
Source: INAMO Shortlist 2014 A5
5/21/2019
Determine the largest natural number
m
m
m
such that for each non negative real numbers
a
1
≥
a
2
≥
.
.
.
≥
a
2014
≥
0
a_1 \ge a_2 \ge ... \ge a_{2014} \ge 0
a
1
≥
a
2
≥
...
≥
a
2014
≥
0
, it is true that
a
1
+
a
2
+
.
.
.
+
a
m
m
≥
a
1
2
+
a
2
2
+
.
.
.
+
a
2014
2
2014
\frac{a_1+a_2+...+a_m}{m}\ge \sqrt{\frac{a_1^2+a_2^2+...+a_{2014}^2}{2014}}
m
a
1
+
a
2
+
...
+
a
m
≥
2014
a
1
2
+
a
2
2
+
...
+
a
2014
2
algebra
inequalities