MathDB
Problems
Contests
National and Regional Contests
India Contests
Regional Mathematical Olympiad
2011 India Regional Mathematical Olympiad
2
2
Part of
2011 India Regional Mathematical Olympiad
Problems
(2)
Indian RMO 2011: Question 2
Source:
12/4/2011
Let
(
a
1
,
a
2
,
a
3
,
.
.
.
,
a
2011
)
(a_1,a_2,a_3,...,a_{2011})
(
a
1
,
a
2
,
a
3
,
...
,
a
2011
)
be a permutation of the numbers
1
,
2
,
3
,
.
.
.
,
2011
1,2,3,...,2011
1
,
2
,
3
,
...
,
2011
. Show that there exist two numbers
j
,
k
j,k
j
,
k
such that
1
≤
j
<
k
≤
2011
1\leq{j}<k\leq2011
1
≤
j
<
k
≤
2011
and
∣
a
j
−
j
∣
=
∣
a
k
−
k
∣
|a_j-j|=|a_k-k|
∣
a
j
−
j
∣
=
∣
a
k
−
k
∣
2n+1, 3n+1 perfect squares [RMO2-2011, India]
Source:
12/31/2011
Let
n
n
n
be a positive integer such that
2
n
+
1
2n+1
2
n
+
1
and
3
n
+
1
3n+1
3
n
+
1
are both perfect squares. Show that
5
n
+
3
5n+3
5
n
+
3
is a composite number.