Let A′,B′,C′ be points, in which excircles touch corresponding sides of triangle ABC. Circumcircles of triangles A′B′C,AB′C′,A′BC′ intersect a circumcircle of ABC in points C1=C,A1=A,B1=B respectively. Prove that a triangle A1B1C1 is similar to a triangle, formed by points, in which incircle of ABC touches its sides. geometrycircumcirclegeometry solved