MathDB
Problems
Contests
National and Regional Contests
India Contests
India Pre-Regional Mathematical Olympiad
2014 India PRMO
19
19
Part of
2014 India PRMO
Problems
(1)
2014 preRMO p19, sum x_i=1, sum x_i/(1-x_i)=1, sum x^2_i/(1-x_i)=?
Source:
8/9/2019
Let
x
1
,
x
2
,
.
.
.
,
x
2014
x_1,x_2,... ,x_{2014}
x
1
,
x
2
,
...
,
x
2014
be real numbers different from
1
1
1
, such that
x
1
+
x
2
+
.
.
.
+
x
2014
=
1
x_1 + x_2 +...+x_{2014} = 1
x
1
+
x
2
+
...
+
x
2014
=
1
and
x
1
1
−
x
1
+
x
2
1
−
x
2
+
.
.
.
+
x
2014
1
−
x
2014
=
1
\frac{x_1}{1-x_1}+\frac{x_2}{1-x_2}+...+\frac{x_{2014}}{1-x_{2014}}=1
1
−
x
1
x
1
+
1
−
x
2
x
2
+
...
+
1
−
x
2014
x
2014
=
1
What is the value of
x
1
2
1
−
x
1
+
x
2
2
1
−
x
2
+
.
.
.
+
x
2014
2
1
−
x
2014
\frac{x^2_1}{1-x_1}+\frac{x^2_2}{1-x_2}+...+\frac{x^2_{2014}}{1-x_{2014}}
1
−
x
1
x
1
2
+
1
−
x
2
x
2
2
+
...
+
1
−
x
2014
x
2014
2
?
Sum
algebra