MathDB
Problems
Contests
National and Regional Contests
India Contests
India National Olympiad
2012 India National Olympiad
2
2
Part of
2012 India National Olympiad
Problems
(1)
P 2 Prove 30 \ p_1 - q_1 27th Indian NMO 2012
Source: INMO
2/5/2012
Let
p
1
<
p
2
<
p
3
<
p
4
p_1<p_2<p_3<p_4
p
1
<
p
2
<
p
3
<
p
4
and
q
1
<
q
2
<
q
3
<
q
4
q_1<q_2<q_3<q_4
q
1
<
q
2
<
q
3
<
q
4
be two sets of prime numbers, such that
p
4
−
p
1
=
8
p_4 - p_1 = 8
p
4
−
p
1
=
8
and
q
4
−
q
1
=
8
q_4 - q_1= 8
q
4
−
q
1
=
8
. Suppose
p
1
>
5
p_1 > 5
p
1
>
5
and
q
1
>
5
q_1>5
q
1
>
5
. Prove that
30
30
30
divides
p
1
−
q
1
p_1 - q_1
p
1
−
q
1
.
number theory
prime numbers
divisibility tests
number theory proposed