MathDB
Problems
Contests
National and Regional Contests
India Contests
India National Olympiad
2000 India National Olympiad
5
5
Part of
2000 India National Olympiad
Problems
(1)
Solution of a cubic
Source: INMO 2000 Problem 5
10/10/2005
Let
a
,
b
,
c
a,b,c
a
,
b
,
c
be three real numbers such that
1
≥
a
≥
b
≥
c
≥
0
1 \geq a \geq b \geq c \geq 0
1
≥
a
≥
b
≥
c
≥
0
. prove that if
λ
\lambda
λ
is a root of the cubic equation
x
3
+
a
x
2
+
b
x
+
c
=
0
x^3 + ax^2 + bx + c = 0
x
3
+
a
x
2
+
b
x
+
c
=
0
(real or complex), then
∣
λ
∣
≤
1.
| \lambda | \leq 1.
∣
λ
∣
≤
1.
algebra
polynomial
algebra unsolved