MathDB
Problems
Contests
National and Regional Contests
Greece Contests
Greece Team Selection Test
2016 Greece Team Selection Test
2016 Greece Team Selection Test
Part of
Greece Team Selection Test
Subcontests
(2)
2
1
Hide problems
Intersections of lines...
Given is a triangle
△
A
B
C
\triangle{ABC}
△
A
BC
,with
A
B
<
A
C
<
B
C
AB<AC<BC
A
B
<
A
C
<
BC
,inscribed in circle
c
(
O
,
R
)
c(O,R)
c
(
O
,
R
)
.Let
D
,
E
,
Z
D,E,Z
D
,
E
,
Z
be the midpoints of
B
C
,
C
A
,
A
B
BC,CA,AB
BC
,
C
A
,
A
B
respectively,and
K
K
K
the foot of the altitude from
A
A
A
.At the exterior of
△
A
B
C
\triangle{ABC}
△
A
BC
and with the sides
A
B
,
A
C
AB,AC
A
B
,
A
C
as diameters,we construct the semicircles
c
1
,
c
2
c_1,c_2
c
1
,
c
2
respectively.Suppose that
P
≡
D
Z
∩
c
1
,
S
≡
K
Z
∩
c
1
P\equiv DZ\cap c_1 \ , \ S\equiv KZ\cap c_1
P
≡
D
Z
∩
c
1
,
S
≡
K
Z
∩
c
1
and
R
≡
D
E
∩
c
2
,
T
≡
K
E
∩
c
2
R\equiv DE\cap c_2 \ , \ T\equiv KE\cap c_2
R
≡
D
E
∩
c
2
,
T
≡
K
E
∩
c
2
.Finally,let
M
M
M
be the intersection of the lines
P
S
,
R
T
PS,RT
PS
,
RT
.i. Prove that the lines
P
R
,
S
T
PR,ST
PR
,
ST
intersect at
A
A
A
.ii. Prove that the lines
P
R
∩
M
D
PR\cap MD
PR
∩
M
D
intersect on
c
c
c
.[asy]import graph; size(8cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.8592569519241255, xmax = 12.331775417316715, ymin = -3.1864435704043403, ymax = 6.540061585876658; /* image dimensions */ pen aqaqaq = rgb(0.6274509803921569,0.6274509803921569,0.6274509803921569); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274); draw((0.6699432366054657,3.2576036755978928)--(0.,0.)--(5.,0.)--cycle, aqaqaq); /* draw figures */ draw((0.6699432366054657,3.2576036755978928)--(0.,0.), uququq); draw((0.,0.)--(5.,0.), uququq); draw((5.,0.)--(0.6699432366054657,3.2576036755978928), uququq); draw(shift((0.33497161830273287,1.6288018377989464))*xscale(1.662889476749906)*yscale(1.662889476749906)*arc((0,0),1,78.3788505217281,258.3788505217281)); draw(shift((2.834971618302733,1.6288018377989464))*xscale(2.7093067970187343)*yscale(2.7093067970187343)*arc((0,0),1,-36.95500560847834,143.0449943915217)); draw((0.6699432366054657,3.2576036755978928)--(0.6699432366054657,0.)); draw((-0.9938564482532047,2.628510486065423)--(2.5,0.)); draw((0.6699432366054657,0.)--(0.,3.2576036755978923)); draw((0.6699432366054657,0.)--(5.,3.257603675597893)); draw((2.5,0.)--(3.3807330143335355,4.282570444700163)); draw((-0.9938564482532047,2.628510486065423)--(2.5,4.8400585427926455)); draw((2.5,4.8400585427926455)--(5.,3.257603675597893)); draw((-0.9938564482532047,2.628510486065423)--(3.3807330143335355,4.282570444700163), linewidth(1.2) + linetype("2 2")); draw((0.,3.2576036755978923)--(5.,3.257603675597893), linewidth(1.2) + linetype("2 2")); draw(circle((2.5,1.18355242571055), 2.766007292905304), linewidth(0.4) + linetype("2 2")); draw((2.5,4.8400585427926455)--(2.5,0.), linewidth(1.2) + linetype("2 2")); /* dots and labels */ dot((0.6699432366054657,3.2576036755978928),linewidth(3.pt) + dotstyle); label("
A
A
A
", (0.7472169504504719,2.65), NE * labelscalefactor); dot((0.,0.),linewidth(3.pt) + dotstyle); label("
B
B
B
", (-0.2,-0.4), NE * labelscalefactor); dot((5.,0.),linewidth(3.pt) + dotstyle); label("
C
C
C
", (5.028818057451246,-0.34281415594345044), NE * labelscalefactor); dot((2.5,0.),linewidth(3.pt) + dotstyle); label("
D
D
D
", (2.4275434226319077,-0.32665717063401356), NE * labelscalefactor); dot((2.834971618302733,1.6288018377989464),linewidth(3.pt) + dotstyle); label("
E
E
E
", (3.073822835009383,1.5637101105701008), NE * labelscalefactor); dot((0.33497161830273287,1.6288018377989464),linewidth(3.pt) + dotstyle); label("
Z
Z
Z
", (0.003995626216375389,1.402140257475732), NE * labelscalefactor); dot((0.6699432366054657,0.),linewidth(3.pt) + dotstyle); label("
K
K
K
", (0.6179610679749769,-0.3105001853245767), NE * labelscalefactor); dot((-0.9938564482532047,2.628510486065423),linewidth(3.pt) + dotstyle); label("
P
P
P
", (-1.0785223895158957,2.7916409940873033), NE * labelscalefactor); dot((0.,3.2576036755978923),linewidth(3.pt) + dotstyle); label("
S
S
S
", (-0.14141724156855653,3.454077391774215), NE * labelscalefactor); dot((5.,3.257603675597893),linewidth(3.pt) + dotstyle); label("
T
T
T
", (5.061132028070119,3.3571354799175936), NE * labelscalefactor); dot((3.3807330143335355,4.282570444700163),linewidth(3.pt) + dotstyle); label("
R
R
R
", (3.445433497126431,4.375025554412117), NE * labelscalefactor); dot((2.5,4.8400585427926455),linewidth(3.pt) + dotstyle); label("
M
M
M
", (2.5567993051074027,4.940520040242407), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy]
1
1
Hide problems
Relatively prime to all the terms
Given is the sequence
(
a
n
)
n
≥
0
(a_n)_{n\geq 0}
(
a
n
)
n
≥
0
which is defined as follows:
a
0
=
3
a_0=3
a
0
=
3
and
a
n
+
1
−
a
n
=
n
(
a
n
−
1
)
,
∀
n
≥
0
a_{n+1}-a_n=n(a_n-1) \ , \ \forall n\geq 0
a
n
+
1
−
a
n
=
n
(
a
n
−
1
)
,
∀
n
≥
0
.Determine all positive integers
m
m
m
such that
gcd
(
m
,
a
n
)
=
1
,
∀
n
≥
0
\gcd (m,a_n)=1 \ , \ \forall n\geq 0
g
cd
(
m
,
a
n
)
=
1
,
∀
n
≥
0
.