3
Part of 2013 Greece Team Selection Test
Problems(2)
Maximum Value
Source: Greek TST,2013,Pr.3
8/28/2014
Find the largest possible value of for which for all with
functioninequalities proposedinequalities
Concurrent Diagonals Of Hexagon
Source: 2013 Greek 2nd TST,Pr.3
5/24/2016
Given is a triangle .On the extensions of the side we consider points such that (with lying closer to ).On the extensions of the side we consider points such that (with lying closer to ).On the extensions of the side we consider points such that (with lying closer to ).On the segment we consider points such that where .Points and are defined similarly,on the segments respectively.If , and ,prove that the diagonals of the hexagon are concurrent. [asy]import graph; size(12cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -7.984603447540051, xmax = 21.28710511372557, ymin = -6.555010307713199, ymax = 10.006614273002825; /* image dimensions */
pen aqaqaq = rgb(0.6274509803921569,0.6274509803921569,0.6274509803921569); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274); draw((1.1583842866003107,4.638449718549554)--(0.,0.)--(7.,0.)--cycle, aqaqaq);
/* draw figures */
draw((1.1583842866003107,4.638449718549554)--(0.,0.), uququq);
draw((0.,0.)--(7.,0.), uququq);
draw((7.,0.)--(1.1583842866003107,4.638449718549554), uququq);
draw((1.1583842866003107,4.638449718549554)--(1.623345080409327,6.500264738079558));
draw((0.,0.)--(-0.46496079380901606,-1.8618150195300045));
draw((-3.0803965232149757,0.)--(0.,0.));
draw((7.,0.)--(10.080396523214976,0.));
draw((1.1583842866003107,4.638449718549554)--(0.007284204967787214,5.552463941947242));
draw((7.,0.)--(8.151100081632526,-0.9140142233976905));
draw((-0.46496079380901606,-1.8618150195300045)--(8.151100081632526,-0.9140142233976905));
draw((-3.0803965232149757,0.)--(0.007284204967787214,5.552463941947242));
draw((10.080396523214976,0.)--(1.623345080409327,6.500264738079558));
draw((0.,0.)--(3.7376079411107392,4.8751985535596685));
draw((-0.7646359770779035,4.164347956460432)--(7.,0.));
draw((1.1583842866003107,4.638449718549554)--(5.997084862772141,-1.150964422430769));
draw((0.,0.)--(7.966133662513563,1.6250661845198895));
draw((-2.308476341169285,1.3881159854868106)--(7.,0.));
draw((1.1583842866003107,4.638449718549554)--(1.6890544250513695,-1.624864820496926));
draw((2.0395968109217,2.660375186246903)--(2.9561195753832448,0.6030390855677443), linetype("2 2"));
draw((3.4388364046369224,1.909931693481981)--(1.4816619768719694,0.8229159040072803), linetype("2 2"));
draw((1.3969966570225139,1.8221911417546572)--(4.301698851378541,0.8775330211014288), linetype("2 2"));
/* dots and labels */
dot((1.1583842866003107,4.638449718549554),linewidth(3.pt) + dotstyle);
label("", (0.6263408942608304,4.2), NE * labelscalefactor);
dot((0.,0.),linewidth(3.pt) + dotstyle);
label("", (-0.44658827292841696,0.04763072114368767), NE * labelscalefactor);
dot((7.,0.),linewidth(3.pt) + dotstyle);
label("", (7.008893888822507,0.18518574257820614), NE * labelscalefactor);
dot((1.623345080409327,6.500264738079558),linewidth(3.pt) + dotstyle);
label("", (1.7267810657369815,6.6777827542874775), NE * labelscalefactor);
dot((-0.46496079380901606,-1.8618150195300045),linewidth(3.pt) + dotstyle);
label("", (-1.1068523758141076,-1.6305405403574376), NE * labelscalefactor);
dot((10.080396523214976,0.),linewidth(3.pt) + dotstyle);
label("", (10.062615364668826,-0.612633381742001), NE * labelscalefactor);
dot((-3.0803965232149757,0.),linewidth(3.pt) + dotstyle);
label("", (-3.3077327187664096,-0.612633381742001), NE * labelscalefactor);
dot((0.007284204967787214,5.552463941947242),linewidth(3.pt) + dotstyle);
label("", (0.1036318128096586,5.714897604245849), NE * labelscalefactor);
dot((8.151100081632526,-0.9140142233976905),linewidth(3.pt) + dotstyle);
label("", (8.521999124602214,-1.1903644717669786), NE * labelscalefactor);
dot((-2.308476341169285,1.3881159854868106),linewidth(3.pt) + dotstyle);
label("", (-2.9776006673235647,1.7808239912186203), NE * labelscalefactor);
dot((-0.7646359770779035,4.164347956460432),linewidth(3.pt) + dotstyle);
label("", (-1.1618743843879151,4.504413415622086), NE * labelscalefactor);
dot((1.6890544250513695,-1.624864820496926),linewidth(3.pt) + dotstyle);
label("", (1.6167370485893664,-2.125738617521704), NE * labelscalefactor);
dot((5.997084862772141,-1.150964422430769),linewidth(3.pt) + dotstyle);
label("", (6.211074764502297,-1.603029536070534), NE * labelscalefactor);
dot((7.966133662513563,1.6250661845198895),linewidth(3.pt) + dotstyle);
label("", (8.081823056011753,1.7808239912186203), NE * labelscalefactor);
dot((3.7376079411107392,4.8751985535596685),linewidth(3.pt) + dotstyle);
label("", (3.8451283958285725,5.027122497073257), NE * labelscalefactor);
dot((2.0395968109217,2.660375186246903),linewidth(3.pt) + dotstyle);
label("", (1.7542920700238853,2.991308179842383), NE * labelscalefactor);
dot((3.4388364046369224,1.909931693481981),linewidth(3.pt) + dotstyle);
label("", (3.542507348672631,2.083445038374561), NE * labelscalefactor);
dot((4.301698851378541,0.8775330211014288),linewidth(3.pt) + dotstyle);
label("", (4.22,0.93), NE * labelscalefactor);
dot((2.9561195753832448,0.6030390855677443),linewidth(3.pt) + dotstyle);
label("", (2.909754250073844,0.10265272971749505), NE * labelscalefactor);
dot((1.4816619768719694,0.8229159040072803),linewidth(3.pt) + dotstyle);
label("", (0.9839839499905795,0.43278478116033936), NE * labelscalefactor);
dot((1.3969966570225139,1.8221911417546572),linewidth(3.pt) + dotstyle);
label("", (0.9839839499905795,1.8908680083662353), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]
geometry