MathDB
Problems
Contests
National and Regional Contests
Greece Contests
Greece National Olympiad
2000 Greece National Olympiad
4
4
Part of
2000 Greece National Olympiad
Problems
(1)
Subsets.
Source: Greece National Olympiad 2000 , Seniors , Problem 4.
11/18/2005
The subsets
A
1
,
A
2
,
…
,
A
2000
A_1,A_2,\ldots ,A_{2000}
A
1
,
A
2
,
…
,
A
2000
of a finite set
M
M
M
satisfy
∣
A
i
∣
>
2
3
∣
M
∣
|A_i|>\frac{2}{3}|M|
∣
A
i
∣
>
3
2
∣
M
∣
for each
i
=
1
,
2
,
…
,
2000
i=1,2,\ldots ,2000
i
=
1
,
2
,
…
,
2000
. Prove that there exists
m
∈
M
m\in M
m
∈
M
which belongs to at least
1334
1334
1334
of the subsets
A
i
A_i
A
i
.
combinatorics proposed
combinatorics