MathDB
Problems
Contests
National and Regional Contests
Greece Contests
Greece Junior Math Olympiad
2024 Greece Junior Math Olympiad
1
1
Part of
2024 Greece Junior Math Olympiad
Problems
(1)
(k+l+m)^2>= 3 (kl+lm+mk), a >= 3b^2 if a(x+y+z)=b(xy+yz+zx)=xyz
Source: Greece Junior Math Olympiad 2024 p1
3/2/2024
a) Prove that for all real numbers
k
,
l
,
m
k,l,m
k
,
l
,
m
holds :
(
k
+
l
+
m
)
2
≥
3
(
k
l
+
l
m
+
m
k
)
(k+l+m)^2 \ge 3 (kl+lm+mk)
(
k
+
l
+
m
)
2
≥
3
(
k
l
+
l
m
+
mk
)
When does equality holds?b) If
x
,
y
,
z
x,y,z
x
,
y
,
z
are positive real numbers and
a
,
b
a,b
a
,
b
real numbers such that
a
(
x
+
y
+
z
)
=
b
(
x
y
+
y
z
+
z
x
)
=
x
y
z
,
a(x+y+z)=b(xy+yz+zx)=xyz,
a
(
x
+
y
+
z
)
=
b
(
x
y
+
yz
+
z
x
)
=
x
yz
,
prove that
a
≥
3
b
2
a \ge 3b^2
a
≥
3
b
2
. When does equality holds?
algebra
inequalities