MathDB
Problems
Contests
National and Regional Contests
Greece Contests
Greece JBMO TST
2022 Greece JBMO TST
2
2
Part of
2022 Greece JBMO TST
Problems
(1)
(CEG) tangent to AC
Source: 2022 Greece JBMO TST p2
11/3/2022
Let
A
B
C
ABC
A
BC
be an acute triangle with
A
B
<
A
C
<
B
C
AB<AC < BC
A
B
<
A
C
<
BC
, inscirbed in circle
Γ
1
\Gamma_1
Γ
1
, with center
O
O
O
. Circle
Γ
2
\Gamma_2
Γ
2
, with center point
A
A
A
and radius
A
C
AC
A
C
intersects
B
C
BC
BC
at point
D
D
D
and the circle
Γ
1
\Gamma_1
Γ
1
at point
E
E
E
. Line
A
D
AD
A
D
intersects circle
Γ
1
\Gamma_1
Γ
1
at point
F
F
F
. The circumscribed circle
Γ
3
\Gamma_3
Γ
3
of triangle
D
E
F
DEF
D
EF
, intersects
B
C
BC
BC
at point
G
G
G
. Prove that: a) Point
B
B
B
is the center of circle
Γ
3
\Gamma_3
Γ
3
b) Circumscribed circle of triangle
C
E
G
CEG
CEG
is tangent to
A
C
AC
A
C
.
geometry
tangent