Problems(1)
For every natural n let ϕ(n) be the number of coprime numbers k∈{1,2,...,n}. (Example: ϕ(12)=4, because among the numbers 1,2,...,12 there are only the4 numbers, 1,5,7 and 11 coprime to12.)
If k is a natural number, then one defines \phi^k (n)=\underbrace{\strut \phi (\phi ...(\phi (n)) ...)}_{(k \, times \phi)} (Example: ϕ3(n)=ϕ(ϕ(ϕ(n))))
For every whole n>2 let c(n) be the smallest natural number k with ϕk(n)=2.
Prove that c(ab)=c(a)+c(b) for odd integers a and b, both of which are greater than 2, . number theoryfunction