The positive integers a1,a2,…,an are aligned clockwise in a circular line with n≥5. Let a0=an and an+1=a1. For each i∈{1,2,…,n} the quotient qi=aiai−1+ai+1 is an integer. Prove 2n≤q1+q2+⋯+qn<3n. inequalitiesIntegernumber theorynumber theory unsolvedn-variable inequality