MathDB
Problems
Contests
National and Regional Contests
Germany Contests
German National Olympiad
1996 German National Olympiad
2
2
Part of
1996 German National Olympiad
Problems
(1)
a,b,>1: x < 1, y < 1, ax+by < 1, 1/(1-ax-by) \le a/(1-x)+b/(1-y) <=> a+b = 1
Source: Germany 1996 p2
2/22/2020
Let
a
a
a
and
b
b
b
be positive real numbers smaller than
1
1
1
. Prove that the following two statements are equivalent: (i)
a
+
b
=
1
a+b = 1
a
+
b
=
1
, (ii) Whenever
x
,
y
x,y
x
,
y
are positive real numbers such that
x
<
1
,
y
<
1
,
a
x
+
b
y
<
1
x < 1, y < 1, ax+by < 1
x
<
1
,
y
<
1
,
a
x
+
b
y
<
1
, the following inequlity holds:
1
1
−
a
x
−
b
y
≤
a
1
−
x
+
b
1
−
y
\frac{1}{1-ax-by} \le \frac{a}{1-x} + \frac{b}{1-y}
1
−
a
x
−
b
y
1
≤
1
−
x
a
+
1
−
y
b
inequalities
algebra