MathDB

2013 Bundeswettbewerb Mathematik

Part of Bundeswettbewerb Mathematik

Subcontests

(4)
4
2

BWM 2013 P8: Combinatorial identity

Consider the Pascal's triangle in the figure where the binomial coefficients are arranged in the usual manner. Select any binomial coefficient from anywhere except the right edge of the triangle and labet it CC. To the right of CC, in the horizontal line, there are tt numbers, we denote them as a1,a2,,ata_1,a_2,\cdots,a_t, where at=1a_t = 1 is the last number of the series. Consider the line parallel to the left edge of the triangle containing CC, there will only be tt numbers diagonally above CC in that line. We successively name them as b1,b2,,btb_1,b_2,\cdots,b_t, where bt=1b_t = 1. Show that bta1bt1a2+bt2a3+(1)t1b1at=1b_ta_1-b_{t-1}a_2+b_{t-2}a_3-\cdots+(-1)^{t-1}b_1a_t = 1. For example, Suppose you choose (41)=4\binom41 = 4 (see figure), then t=3t = 3, a1=6,a2=4,a3=1a_1 = 6, a_2 = 4, a_3 = 1 and b1=3,b2=2,b3=1b_1 = 3, b_2 = 2, b_3 = 1. 111b312b2113b131146a14a21a3\begin{array}{ccccccccccc} & & & & & 1 & & & & & \\ & & & & 1 & & \underset{b_3}{1} & & & & \\ & & & 1 & & \underset{b_2}{2} & & 1 & & & \\ & & 1 & & \underset{b_1}{3} & & 3 & & 1 & & \\ & 1 & & \boxed{4} & & \underset{a_1}{6} & & \underset{a_2}{4} & & \underset{a_3}{1} & \\ \ldots & & \ldots & & \ldots & & \ldots & & \ldots & & \ldots \\ \end{array}