MathDB
Problems
Contests
National and Regional Contests
Ecuador Contests
Ecuador Mathematical Olympiad (OMEC)
2022 Ecuador NMO (OMEC)
6
6
Part of
2022 Ecuador NMO (OMEC)
Problems
(1)
Sweet NT
Source: OMEC Ecuador National Olympiad Final Round 2022 N3 P6 day 2
11/4/2024
Prove that for all prime
p
≥
5
p \ge 5
p
≥
5
, there exist an odd prime
q
≠
p
q \not= p
q
=
p
such that
q
q
q
divides
(
p
−
1
)
p
+
1
(p-1)^p + 1
(
p
−
1
)
p
+
1
number theory
primes
national olympiad