MathDB
Problems
Contests
National and Regional Contests
China Contests
China Girls Math Olympiad
2023 China Girls Math Olympiad
2023 China Girls Math Olympiad
Part of
China Girls Math Olympiad
Subcontests
(8)
8
1
Hide problems
Chinese Girls Mathematical Olympiad 2023, Problem 8
Let
P
i
(
x
i
,
y
i
)
(
i
=
1
,
2
,
⋯
,
2023
)
P_i(x_i,y_i)\ (i=1,2,\cdots,2023)
P
i
(
x
i
,
y
i
)
(
i
=
1
,
2
,
⋯
,
2023
)
be
2023
2023
2023
distinct points on a plane equipped with rectangular coordinate system. For
i
≠
j
i\neq j
i
=
j
, define
d
(
P
i
,
P
j
)
=
∣
x
i
−
x
j
∣
+
∣
y
i
−
y
j
∣
d(P_i,P_j) = |x_i - x_j| + |y_i - y_j|
d
(
P
i
,
P
j
)
=
∣
x
i
−
x
j
∣
+
∣
y
i
−
y
j
∣
. Define
λ
=
max
i
≠
j
d
(
P
i
,
P
j
)
min
i
≠
j
d
(
P
i
,
P
j
)
\lambda = \frac{\max_{i\neq j}d(P_i,P_j)}{\min_{i\neq j}d(P_i,P_j)}
λ
=
min
i
=
j
d
(
P
i
,
P
j
)
max
i
=
j
d
(
P
i
,
P
j
)
.Prove that
λ
≥
44
\lambda \geq 44
λ
≥
44
and provide an example in which the equality holds.
7
1
Hide problems
Chinese Girls Mathematical Olympiad 2023, Problem 7
Let
p
p
p
be an odd prime. Suppose that positive integers
a
,
b
,
m
,
r
a,b,m,r
a
,
b
,
m
,
r
satisfy
p
∤
a
b
p\nmid ab
p
∤
ab
and
a
b
>
m
2
ab > m^2
ab
>
m
2
. Prove that there exists at most one pair of coprime positive integers
(
x
,
y
)
(x,y)
(
x
,
y
)
such that
a
x
2
+
b
y
2
=
m
p
r
ax^2+by^2=mp^r
a
x
2
+
b
y
2
=
m
p
r
.
6
1
Hide problems
Chinese Girls Mathematical Olympiad 2023, Problem 6
Let
x
i
(
i
=
1
,
2
,
⋯
22
)
x_i\ (i = 1, 2, \cdots 22)
x
i
(
i
=
1
,
2
,
⋯
22
)
be reals such that
x
i
∈
[
2
i
−
1
,
2
i
]
x_i \in [2^{i-1},2^i]
x
i
∈
[
2
i
−
1
,
2
i
]
. Find the maximum possible value of
(
x
1
+
x
2
+
⋯
+
x
22
)
(
1
x
1
+
1
x
2
+
⋯
+
1
x
22
)
(x_1+x_2+\cdots +x_{22})(\frac{1}{x_1}+\frac{1}{x_2}+\cdots+\frac{1}{x_{22}})
(
x
1
+
x
2
+
⋯
+
x
22
)
(
x
1
1
+
x
2
1
+
⋯
+
x
22
1
)
5
1
Hide problems
Chinese Girls Mathematical Olympiad 2023, Problem 5
Let
Δ
A
B
C
\Delta ABC
Δ
A
BC
be an acute-angled triangle with
A
B
<
A
C
AB < AC
A
B
<
A
C
,
H
H
H
be a point on
B
C
BC
BC
such that
A
H
⊥
B
C
AH\ \bot BC
A
H
⊥
BC
and
G
G
G
be the centroid of
Δ
A
B
C
\Delta ABC
Δ
A
BC
. Let
P
,
Q
P,Q
P
,
Q
be the point of tangency of the inscribed circle of
Δ
A
B
C
\Delta ABC
Δ
A
BC
with
A
B
,
A
C
AB,AC
A
B
,
A
C
, correspondingly. Define
M
,
N
M,N
M
,
N
to be the midpoint of
P
B
,
Q
C
PB,QC
PB
,
QC
, correspondingly. Let
D
,
E
D,E
D
,
E
be points on the inscribed circle of
Δ
A
B
C
\Delta ABC
Δ
A
BC
such that
∠
B
D
H
+
∠
A
B
C
=
18
0
∘
\angle BDH + \angle ABC = 180^{\circ}
∠
B
DH
+
∠
A
BC
=
18
0
∘
,
∠
C
E
H
+
∠
A
C
B
=
18
0
∘
\angle CEH + \angle ACB = 180^{\circ}
∠
CE
H
+
∠
A
CB
=
18
0
∘
. Prove that lines
M
D
,
N
E
,
H
G
MD,NE,HG
M
D
,
NE
,
H
G
share a common point.
4
1
Hide problems
Chinese Girls Mathematical Olympiad 2023, Problem 4
Let
A
B
C
D
ABCD
A
BC
D
be an inscribed quadrilateral of some circle
ω
\omega
ω
with
A
C
⊥
B
D
AC\ \bot \ BD
A
C
⊥
B
D
. Define
E
E
E
to be the intersection of segments
A
C
AC
A
C
and
B
D
BD
B
D
. Let
F
F
F
be some point on segment
A
D
AD
A
D
and define
P
P
P
to be the intersection point of half-line
F
E
FE
FE
and
ω
\omega
ω
. Let
Q
Q
Q
be a point on segment
P
E
PE
PE
such that
P
Q
⋅
P
F
=
P
E
2
PQ\cdot PF = PE^2
PQ
⋅
PF
=
P
E
2
. Let
R
R
R
be a point on
B
C
BC
BC
such that
Q
R
⊥
A
D
QR\ \bot \ AD
QR
⊥
A
D
. Prove that
P
R
=
Q
R
PR=QR
PR
=
QR
.
2
1
Hide problems
Chinese Girls Mathematics Olympiads 2023, Problem 2
On an
8
×
8
8\times 8
8
×
8
chessboard, place a stick on each edge of each grid (on a common edge of two grid only one stick will be placed). What is the minimum number of sticks to be deleted so that the remaining sticks do not form any rectangle?
1
1
Hide problems
Chinese Girls Mathematical Olympiad 2023, Problem 1
Find all pairs
(
a
,
b
,
c
)
(a,b,c)
(
a
,
b
,
c
)
of positive integers such that
a
2
a
=
b
2
b
+
c
2
c
\frac{a}{2^a}=\frac{b}{2^b}+\frac{c}{2^c}
2
a
a
=
2
b
b
+
2
c
c
3
1
Hide problems
Chinese Girls Mathematical Olympiad 2023, Problem 3
Let
a
,
b
,
c
,
d
∈
[
0
,
1
]
.
a,b,c,d \in [0,1] .
a
,
b
,
c
,
d
∈
[
0
,
1
]
.
Prove that
1
1
+
a
+
b
+
1
1
+
b
+
c
+
1
1
+
c
+
d
+
1
1
+
d
+
a
≤
4
1
+
2
a
b
c
d
4
\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+d}+\frac{1}{1+d+a}\leq \frac{4}{1+2\sqrt[4]{abcd}}
1
+
a
+
b
1
+
1
+
b
+
c
1
+
1
+
c
+
d
1
+
1
+
d
+
a
1
≤
1
+
2
4
ab
c
d
4