In acute triangle ABC, AB>AC. Let M be the midpoint of side BC. The exterior angle bisector of BAC meet ray BC at P. Point K and F lie on line PA such that MF⊥BC and MK⊥PA. Prove that BC2=4PF⋅AK.[asy]
defaultpen(fontsize(10)); size(7cm);
pair A = (4.6,4), B = (0,0), C = (5,0), M = midpoint(B--C), I = incenter(A,B,C), P = extension(A, A+dir(I--A)*dir(-90), B,C), K = foot(M,A,P), F = extension(M, (M.x, M.x+1), A,P);
draw(K--M--F--P--B--A--C);
pair point = I;
pair[] p={A,B,C,M,P,F,K};
string s = "A,B,C,M,P,F,K";
int size = p.length;
real[] d; real[] mult; for(int i = 0; i"+k+"",p,mult*dir(point--p)*dir(d));
}[/asy]