MathDB
Problems
Contests
National and Regional Contests
Chile Contests
Chile National Olympiad
2009 Chile National Olympiad
4
4
Part of
2009 Chile National Olympiad
Problems
(1)
x + 1, x^x + 1, x^{x^x}+1,... are divisible by 2009
Source: Chile Finals 2009 L2 p4
10/5/2022
Find a positive integer
x
x
x
, with
x
>
1
x> 1
x
>
1
such that all numbers in the sequence
x
+
1
,
x
x
+
1
,
x
x
x
+
1
,
.
.
.
x + 1,x^x + 1,x^{x^x}+1,...
x
+
1
,
x
x
+
1
,
x
x
x
+
1
,
...
are divisible by
2009.
2009.
2009.
divides
divisible
number theory