MathDB
Problems
Contests
National and Regional Contests
Chile Contests
Chile National Olympiad
1999 Chile National Olympiad
2
2
Part of
1999 Chile National Olympiad
Problems
(1)
TS _|_ BC wanted, altitudes related (Chile NMO 1999 P2)
Source:
11/27/2021
In an acute triangle
A
B
C
ABC
A
BC
, let
A
K
‾
,
B
L
‾
,
C
M
‾
\overline {AK}, \overline {BL}, \overline {CM}
A
K
,
B
L
,
CM
be the altitudes of the triangle concurrent at the point
H
H
H
and let
P
P
P
the midpoint of
A
H
‾
\overline {AH}
A
H
. Let's define
S
=
B
H
‾
∩
M
K
‾
S = \overline {BH} \cap \overline {MK}
S
=
B
H
∩
M
K
and
T
=
L
P
‾
∩
A
B
‾
T = \overline {LP} \cap \overline {AB}
T
=
L
P
∩
A
B
. Show that
T
S
‾
⊥
B
C
‾
\overline {TS} \perp \overline {BC}
TS
⊥
BC
geometry
perpendicular