MathDB
Problems
Contests
National and Regional Contests
Canada Contests
Canada National Olympiad
1999 Canada National Olympiad
5
5
Part of
1999 Canada National Olympiad
Problems
(1)
inequalities: x^2 y + y^2 z + z^2 x <= 4/27 if x + y + z = 1
Source: CMO (Canada MO) 1999, problem 5
8/5/2003
Let
x
x
x
,
y
y
y
, and
z
z
z
be non-negative real numbers satisfying x \plus{} y \plus{} z \equal{} 1. Show that x^2 y \plus{} y^2 z \plus{} z^2 x \leq \frac {4}{27} and find when equality occurs.
algebra
inequalities
three variable inequality
calculus
Canada