MathDB
Problems
Contests
National and Regional Contests
Canada Contests
Canada National Olympiad
1996 Canada National Olympiad
3
3
Part of
1996 Canada National Olympiad
Problems
(1)
Sequence and divisibility
Source: Canada 1996
3/4/2006
We denote an arbitrary permutation of the integers
1
1
1
,
2
2
2
,
…
\ldots
…
,
n
n
n
by
a
1
a_1
a
1
,
a
2
a_2
a
2
,
…
\ldots
…
,
a
n
a_n
a
n
. Let
f
(
n
)
f(n)
f
(
n
)
denote the number of these permutations such that: (1)
a
1
=
1
a_1 = 1
a
1
=
1
; (2):
∣
a
i
−
a
i
+
1
∣
≤
2
|a_i - a_{i+1}| \leq 2
∣
a
i
−
a
i
+
1
∣
≤
2
,
i
=
1
,
…
,
n
−
1
i = 1, \ldots, n - 1
i
=
1
,
…
,
n
−
1
. Determine whether
f
(
1996
)
f(1996)
f
(
1996
)
is divisible by 3.
algebra unsolved
algebra