MathDB
Problems
Contests
National and Regional Contests
Canada Contests
Canada National Olympiad
1982 Canada National Olympiad
2
2
Part of
1982 Canada National Olympiad
Problems
(1)
On the roots of x^3 = x^2 + x + 1 - [Canada MO 1982 - P2]
Source:
9/7/2011
If
a
a
a
,
b
b
b
and
c
c
c
are the roots of the equation
x
3
−
x
2
−
x
−
1
=
0
x^3 - x^2 - x - 1 = 0
x
3
−
x
2
−
x
−
1
=
0
, (i) show that
a
a
a
,
b
b
b
and
c
c
c
are distinct: (ii) show that
a
1982
−
b
1982
a
−
b
+
b
1982
−
c
1982
b
−
c
+
c
1982
−
a
1982
c
−
a
\frac{a^{1982} - b^{1982}}{a - b} + \frac{b^{1982} - c^{1982}}{b - c} + \frac{c^{1982} - a^{1982}}{c - a}
a
−
b
a
1982
−
b
1982
+
b
−
c
b
1982
−
c
1982
+
c
−
a
c
1982
−
a
1982
is an integer.