A right circular cone has base radius 1 cm and slant height 3 cm is given. P is a point on the circumference of the base and the shortest path from P around the cone and back to P is drawn (see diagram). What is the minimum distance from the vertex V to this path?[asy]
import graph;unitsize(1 cm);filldraw(shift(-0.15,0.37)*rotate(17)*yscale(0.3)*xscale(1.41)*(Circle((0,0),1)),gray(0.9),nullpen);
draw(yscale(0.3)*(arc((0,0),1.5,0,180)),dashed);
draw(yscale(0.3)*(arc((0,0),1.5,180,360)));
draw((1.5,0)--(0,4)--(-1.5,0));
draw((0,0)--(1.5,0),Arrows);
draw(((1.5,0) + (0.3,0.1))--((0,4) + (0.3,0.1)),Arrows);
draw(shift(-0.15,0.37)*rotate(17)*yscale(0.3)*xscale(1.41)*(arc((0,0),1,0,180)),dashed);
draw(shift(-0.15,0.37)*rotate(17)*yscale(0.3)*xscale(1.41)*(arc((0,0),1,180,360)));label("V", (0,4), N);
label("1 cm", (0.75,-0.5), N);
label("P", (-1.5,0), SW);
label("3 cm", (1.7,2));
[/asy] geometry3D geometrygeometry unsolved