MathDB
Problems
Contests
National and Regional Contests
Canada Contests
Canada National Olympiad
1974 Canada National Olympiad
4
4
Part of
1974 Canada National Olympiad
Problems
(1)
Sum of reals
Source: Canada 1974/4
1/13/2007
Let
n
n
n
be a fixed positive integer. To any choice of real numbers satisfying 0\le x_{i}\le 1, i=1,2,\ldots, n, there corresponds the sum
∑
1
≤
i
<
j
≤
n
∣
x
i
−
x
j
∣
.
\sum_{1\le i<j\le n}|x_{i}-x_{j}|.
1
≤
i
<
j
≤
n
∑
∣
x
i
−
x
j
∣.
Let
S
(
n
)
S(n)
S
(
n
)
denote the largest possible value of this sum. Find
S
(
n
)
S(n)
S
(
n
)
.